DNA REPLICATION, DNA MUTABILITY & DNA REPAIR

Course: Molecular Biology (BIOL 333)

Instructor: Dr Mahmoud Srour

Textbook: Watson J, et al. (2014). Molecular Biology of the Gene, $7^{\rm th}$ ed. Chapters 9 and 10

DNA polymerases are specialized for different roles in the cell

Prokaryotic (E. coli)	Number of Subunits	Function
Pol I	1	RNA primer removal, DNA repair
Pol II (Din A)	1	DNA repair
Pol III core	3	Chromosome replication
Pol III holoenzyme	9	Chromosome replication
Pol IV (Din B)	1	DNA repair, translesion synthesis (TLS)
Pol V (UmuC, UmuD'2C)	3	TLS

Only Pol I & III have proof reading activity and function in DNA replication

Eukaryotic	Number of Subunits	Function			
² ol α	4	Primer synthesis during DNA replication			
olβ	1	Base excision repair			
Polγ	3	Mitochondrial DNA replication and repair			
Pol δ	2–3	Lagging-strand DNA synthesis; nucleotide and base excision repair			
Pol e	4	Leading-strand DNA synthesis; nucleotide and base excision repair			
Pol θ	acture of a sliding TNA clampt	DNA repair of cross-links			
Pol C	sociated with DNA the open	TLS			
Polλ	1	Meiosis-associated DNA repair			
Polu	1	Somatic hypermutation			
Polĸ	1	TLS			
Pol ŋ	1	Relatively accurate TLS past cis-syn cyclobutane dimers			
Pol ı	1	TLS, somatic hypermutation			
Rev1	1	TLS			

- Both the leading and lagging strands requires primase to initiate DNA synthesis, but the frequency of primase function on the two strands is dramatically different. WHY??
- Why the primase adds an RNA primer, not a DNA primer??

- Insertions & deletions: either small or drastic changes
- Mutations can arise spontaneously at any given site and ranges from 10⁻⁸ to 10⁻¹¹ per round of DNA replication
- Some sites are hot spots: simple sequence repeats of dior tri- or tetra-nucleotide sequences (DNA microsatellites)
- Slippage occurs during replication of DNA microsatellites (repetitive DNA sequences), resulting in increase or decrease of repeats >> generates polymorphisms
- Examples: the "CA" repeat sites are highly polymorphic in the population

- Mismatch repair system: responsible for the fidelity of DNA replication
- □ Functions:
 - It must scan the genome for mismatches, mismatches are transient
 - It must correct the mismatch accurately
 - In E. coli mismatches are detected by the MR protein: MutS (has ATPase activity)
 - MutS embraces the mismatch, induces a kink in DNA, recruits MutL. The MutL activates MutH (endonuclease)
 - The UvrD Helicase unwinds the DNA starting at incision site

Repair of DNA damage

DNA repair systems

Туре	Damage	Enzyme
Mismatch repair	Replication errors	MutS in E. coli, MSH in humans
Photoreactivation	Pyrimidine dimers	DNA photolyase
Base excision repair	Damaged bases	DNA glycosylase
Nucleotide excision repair	Pyrimidine dimers, bulky adducts on bases	UvrA/B/C/D in E. coli XPC/A/D, ERCCI-XPF, XPG in humans
Double-strand break repair	Double-strand breaks	RecA & RecBCD in E. coli
Translesion DNA synthesis	Pyrimidine dimers or apurinic site	Y-family DNA polymerases, such as UmuC in E. coli

- How do cells repair double-strand breaks (DSB) in DNA in which both strands of the duplex are broken?
- >By the DSB repair pathway> retrieves sequence information from undamaged sister chromosome
- Alternatively and under some conditions, SBs are repaired by direct joining of broken ends> nonhomologous end joining (NHEJ)
- □ NHEJ protects and process broken ends then join them
- □ NHEJ is mutagenic

